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LIST OF SYMBOLS

A- n x n invariant system matrix;

B - n x m invariant input matrix;

C - k x m invariant output matrix;

D - n x n invariant closed-loop matrix;

E - 2n x 2n invariant diagonal matrix of (Transl. Note: omission in Hebrew original);i

F 1 - n x n invariant matrix (see existence theorem 4.1);

F2 - n x n invariant matrix (see Eq. (5.5b);

J - n x n invariant matrix, diagonalized according to Jordan;

- 2n x 2n invariant matrix (see Eq. (3.22));

I - set of eigenvectors;

M - 2n x 2n invariant matrix of the Euler-Lagrange equations;

P - n x n matrix of the solution of the Riccati equation;

Q - n x n definite or semidefinite matrix (see Eq. (3.11));

S - n x n matrix defined by Eq. (5.23);

R
1

- k x k definite (positive or negative, depending on the case) matrix;

R
2

- m x m positive definite matrix;

T - n x n invariant matrix defined by Eq. (3.4);

V - 2n x 2n invariant matrix;

X - n x n invariant matrices;

Y - n x n invariant matrices;

Z - n x n invariant matrices;

- eij (jw) - eigenvector corresponding to eigenvalue P = jw;

e - n-dimensional vector, eigenvector of M;

f - quadratic cost function;

p - eigenvalue of M



i, j, k, 1, m, n, q, r, s - current subscripts;

v(jw) - eigenvector of M' corresponding to eigenvalue p = jw;

t - current time;

tf - optimum-process time;

tc - conjugate-point time;

u - m-dimensional vector - input vector;

y - k-dimensional vector - output vector;

x - n-dimensional vector - vector of state variables;

A- n-dimensional vector - vector of Lagrangian multipliers;

C(t) - 2n x 2n time-variant transformation matrix;

jw - pure imaginary eigenvalue of M

Vt - n-dimensional vectors;

- n-dimensional vectors;

- n-dimensional vectors;

- n-dimensional vectors;

n_ n-dimensional space;

(U) - transformation range corresponding to the matrix subspace;

(U) - subspace orthogonal to i (U);

/(U) - nullity subspace of U;

U - pseudo inverse of U;

Uob - square submatrix of U whose columns and rows correspond to observable
state variables of A;

Uno
b

- square submatrix of U whose columns and rows correspond to nonobservable
state variables of A;

U - square submatrix of U whose columns and rows correspond to controllable
state variables of A;

Unc - square submatrix of U whose columns and rows correspond to noncontroll-
able state variables of A.
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ABSTRACT

This thesis is concerned with optimization of linear,
means of quadratic criteria.

time-invariant systems by

Given a system described by its state variables:

x(t) = Ax(t) + Bu(t) (1)

x(o) = X00

y = Cx

it is required to find an optimal controller u(t) that will minimize the cost func-
tion +

f(u;xo ) = (y' (t)R1y(t) + u'(t)R2 (t) u(t) ) dt (2)

t
0

where R1 and R
2

are symmetric matrices.

It is the purpose of this thesis to find necessary and sufficient conditions for
the existence of an optimal solution and to find the properties of such a solution if
it does exist. The method of solution is based on the calculus of variations and
analysis of the results thus obtained by the methods of linear algebra.

Chapter 2 surveys the general results obtained by others concerning the ex-
istence of a solution to this problem [1, 2]. It is found that necessary and sufficient
conditions for the existence of an optimal solution are the following:

a. R2'O0;
b: Satisfaction of the Euler-Lagrange equations

BR21 B'

-A'
= MN:1 %: l

(3)

with the boundary conditions

= O ; x(t )010 0

1

x I-* aX K.JR 1



c. Nonexistence of a point to, which would be conjugate to tf over the range
(to0 , tf).

Chapters 3 through 5 are concerned with the application of these conditions to
the case of R > 0 and with the determination of the constraints on the quantities
A, B, and C and on their interrelationships. Chapter 3 discusses the special prop-
erties of a matrix M. It is found that the eigenvalues of this matrix are sym-
metric even with respect to the imaginary axis. The fact is also established that,
with the exception of special cases, the matrix M has no eigenvalues p such that
Re(p) = 0.

It turns out that, with the exception of these particular cases, it is possible to
find a matrix E such that

a. 0 (4)
E ME =

0 -J' j

where J is a matrix in Jordan canonical form

b. -E(5)
22 12

E

It should be noted that the thesis also discusses the exceptional cases whenIt should be noted that the thesis also discusses the exceptional cases when
eigenvalues of the type Re(p) = 0 do exist.

Chapter 4 analyzes the properties of matrices E... Necessary and sufficient
conditions are found for the existence of matrices E. :/When these do not

exist, 3,(Eij) ; and R (Eij) are found.

Chapter 5 utilizes the information obtained in Chapters 3 and 4 for determi-
nation of the nature of the optimal solution and for establishing the existence or
nonexistence of a conjugate point. This chapter proves the known results that,
in the case of R1 > 0: a) an optimal solution exists for every system for finite
tf; b) a solution exists as tfac, only if the observable part of A can be stabilized.

The method of solution presented here is not new and has already been used in
[1,2]. However, this approach was used there on the assumption that a solution
does exist [without proving this existence]. Because of this, some assumptions
were made without proof and without establishing limits of applicability of these
assumptions. In addition, the above studies were restricted to cases when M is
a simple linear transformation and has no eigenvalues p such that Re(p) = 0. The
present thesis is concerned also with cases excluded by the above restrictions.

The method presented here has an advantage over the classical approach of
[3] in that it is not restricted to a specific property of the problem, but addresses

2



itself directly to the defining Euler-Lagrange equations. This is illustrated in
Chapter 6, where the problem is solved for the case R < 0, which is termed
the maximization problem and cannot be proven by the method of [3]. In this
Chapter, we refer to Chapters 3-5 in order to elucidate the special properties of
M in this case and to point out the differences between the nature of the minimi-
zation and maximization solution.

The results in this cases are more quantitative than qualitative. Precise
necessary and sufficient conditions were obtained only for the limiting case as
tf -> c; these are:

a. ~a. xt(AC-jqI) (c'R1C) (A'+j)I) + B'R2 xO

be :x (A'+j a·)I). x R (C'R C)

b. The observable partof A isunconditionally stable ,b. The observable part of A is unconditionally stable.

Only partial results are obtained for finite tf. These results are quantitative
and are given in the thesis proper.

3



CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem of the Controller

One of the most frequent problems in the theory of optimal control is that
of the controller. This problem pertains to the following. We are given a system
with initial conditions at time to. It is required to select a controller or an in-
put signal which will bring the system to the vicinity of its zero state upon reach-
ing a specified time tf. The problem is solved by establishing an appropriate
cost function for the state of the system at any given instant and by finding an
input signal which will result in minimization of the cost function.

When no apriori restrictions are imposed on the input signal, it is custo-
mary to supplement the cost function by a term the minimization of which will
cause the input signal to attain a sensible amplitude or energy. In fact, this
problem is a particular case of the optimization problem as a whole. Since this
problem has a practical bearing on many applications, it has been treated ex-
tensively in the literature of control theory.

1.2 Statement of the Maximization Problem

Another problem of this kind is that of maximization. Here we are given a
system with initial conditions specified at t.. It is necessary to select an input
signal which will result in maximization of the state variables or some of them
up to a given time tf. Again in this case the cost function is supplemented by a
term which limits the input signal to a finite value.

The requirements of maximization of the state variables on the one hand and
of minimization of the input signal on the other are not always compatible. For
this reason, the existence of a final solution to this problem is not a, priori
guaranteed. Problems of this kind have a practical bearing on the design of sys-
tems using the method of design for the worst case under the assumption of max-
imum possible interference. Similar maximization problems are also encountered
in problems of evasion.



1.3 Method of Solution

This study is limited to time-constant linear systems and to time-constant
quadratic cost functions. These conditions make 'it possible to obtain relatively
simple conditions for the existence of a solution and for analysis of the significance
of these conditions. The method of solution is based on the calculus of variations
and on examination of the Euler-Lagrange equations which are obtained in it by us-
ing linear-algebra techniques.

1.4 Discussion Published Studies

The above method of solution is not new and has already been examined in a
number of articles [1, 2]; the principal contribution of this paper is the proof of
assumptions made in the above studies, but not proven there. In addition, this
study pertains to cases not discussed elsewhere. The present study is based (in
part) on the classical conditions for the existence of a solution, which are presented
here without proof and which were taken from [4, 5].

The bulk of the mathematical computations uses the methods of linear algebra.
In conjunction with this, extensive use is made of [8]. The variational computations
are based on a number of basic references.

1.5 Scope of the Study

As was mentioned, the principal contribution of this paper is proof of the as-
sumptions used in [1,2,3] without any proof. This proof is given in Chapters 4 and
5. Chapter 3 serves as an introduction to these two chapters. Chapter 6 considers
the problem of the maximum and it points to the differences between the solutions
of the maximization and minimization problems.



CHAPTER 2.,.

STATEMENT OF THE PROBLEM AND ITS SOLUTION

2.1 Statement of Problem

We have given a time-invariant linear system of finite order n defined by
the linear vectorial equation

x(t) = Ak(t) + Bu (t) (2.1)

x(t)= x
o O

y = Cx

where x(t) is an n-dimensional vector describing the state of the system at time
t, u(t) is an m-dimensional vector serving as the input signal at time t, and y(t)
is a k-dimensional vector serving as the output signal at time t.

Every piecewise-continuous input signal will be called admissible. A, B, and
C are k x n, n x m and n x n matrices respectively.

Together with the above system, we are given the quadratic cost function

f(U;xo) = Sf (y'(t)R1 y,(t) + u'(t)R2 u (t)) dt (2.2)
O

where t, and tf are specified.

R1 and R2 are k x k and m x m matrices respectively. It is required to find
an optimal input signal u*.(t) which will minimize the cost function (2.2) subject to
condition (2.1), i.e., f(i f f(u) for all u(t).

2.2 Presentation of Solution

The solution of the problem and conditions for existence of a solution are
summarized in the theorems that follow. The proof of these is given in [1, 41.

6



Theorem 1' The optimum input signal u(t) for system (2.1) and cost function
(2.2) satisfies the Euler-Lagrange equations:

f (t) = Ax(t) + B u(t) (2.3)

(t) =-A"Mt) -(t) -C'R1Cx(t) (2.4)

R2 u(t) : -B'(t) (2.5)

with the boundary conditions

x(to) X' = Xo(2.6)

N(tf) -= o (2.7)

where the n-dimensional vectorA(t) is the vector of the Lagrangian multipliers.
This theorem shall be termed necessary condition I for the existence of a solution.

Theorem 2 (Necessary condition II). A necessary condition for the existence
of a unique solution of this problem is that R2 >0. This condition is analogous
to the Legendre-Clebsch condition in the calculus of variations.

Theorem 3 (Necessary condition III). A necessary condition for the existence
of a solution to this problem is the nonexistence of a point tc

conjugate to the point tf
in the interval (too, tf). This condition is analogous to the Jacobi condition in the \
calculus of variations.

Definition of conjugate point. A point t is conjugate to tf if it is contained
in the interval-(to, tf) and there exists a nontrivial solution to Eqs. (2.3)-(2.5)
which satisfies the boundary conditions

x(t c ) = 0 (2.8)

0 O (2.9)
~(tf) ' = o (2.9)

Theorem 4 Satisfaction of the necessary conditions I, II, and III is a sufficient
condition for the existence of a solution to the problem for finite tfo

2.3 Solution of Euler-Lagrange Equations

It is possible to write Eqs. (2.3)-(2.5) as a system of linear homogeneous
equations

( f~~R-BRz'BIjjx(t) = A (2.10)

(t) J--'R, C -A' W(t)

i7



If we define the matrix

A
M = 

1-C'R C

equation (2.10) may be written

(2.12)
x(t)

= M
,\(t) I

The transformation matrix of a homogeneous equation will be denoted by 9 (tI , t2 )½

(2.13a)

O~t(;t2 T('t,;t 2 ) =
sftl;t2,) =Ie-~t t2) i(tltZ) 

21Since M is a time-invariant matrix, we have2

Since M is a time-invariant matrix, we have

Y(t1 ;t2) C(t -t2)

The submatrices .ij are n x n, but have no properties
matrix. Using Eqs. (2.13) and (2.6), we get

x(t) r (t-to)Xo +

(2.13b)

of the transformation

(2.14)
e 1 2 (t-to) X0

(t) = : (t-to)x +

and, from boundary conditions (2.7), we get

(2.15)(21 (tf-to)o + 22(tf-to) o =

2.4 Check for Nonexistence of a Conjugate Point

Substitution of boundary conditions (2.7) and (2.8) into Eqs. (2.13) yields

22(tf-tc) A/ (tc) I A(tf) = o0

-BR21B'

-A' 

(2.11)

8
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For this equation to have only a trivial solution, it is necessary that

det ( 22(tf-tC ) (2.17)

This condition is analogous to the condition of existence of a unique solution of
Eq. (. 15).

2.5 Solution in a Closed Loop

When there is no conjugate point, it is possible to solve the problem in a
closed loop, with X(t) selected at any given time in such a manner that the value
of x(t) at that time is the initial condition of the system and it is necessary to
minimize the cost function in the interval (to/ tf). From Eq. (2.15)

\(t) = 212(t-t (t-t )X(t)

(t) = P(t-) ' x(t)

where

p(t.) '. = e;((t t )) (2.19)22 21 f

The matrix P(t) satisfies the Riccati equation

P(t -= -C!'RC-A'P(t)-P(t)A+P(t)ER2B'P(t); P(tf) = 0 (2.20)

and the value of the cost function is

f(xo ;t f ) = x P(tf-to)x (2.21)

A solution will exist as tf~ co if there exists a solution for every finite to and
if

lim P(t-t) = finite ( - --- ,!£ o ' 



CHAPTER 3.

ANALYSIS OF THE EULER-LAGRANGE EQUATIONS

3.1 Introduction

The following chapters are concerned with solution of the problem of the
minimum, i.e., in the case of Ri >0. As was shown in the preceding chapter,
the optimum solution satisfies the Euler-Lagrange equations with appropriate
boundary conditions.

In the case of time-invariant linear systems and quadratic cost functions
with time-constant coefficients, these equations are defined by the system of
time-invariant linear equations

1(t) [(t) l (2.12)

A(t)J -(t

, C'R1C -A'

We shall attempt to gather a maximum of information on the nature of the
optimal solution by analyzing the above equations by the methods of linear algebra.

In the proofs which follow, we shall on a number of occasions need the canonical
forms of A, 1B, and C. For each of the systems A, B, and C, it is possible,
after appropriate transformation, to obtain the following form (see [81, Chapter
11):

10



£Q 1 

x1 A1l A12 A1 3 14 x1 

X2 = ° A2 2 A24 X2 B2

3) 3 0 O A3 3 A3 4 x O

v 4O O -44 1

X2
x3
x4

where the matrix elements A pertaining to observable, nonobservable, controll-
able, and noncontrollable state variables are as follows:I

A22 A24 I ; nob 1 A13 1 (3.2)
Aob = 0 A44 ; Anob = 0A44 =1O A33

A1 2 A3 4

Henceforth, it shall be assumed that the matrices are A44lly given in this

Henceforth, it shall be assumed that the matrices are initially given in this
canonical form. Moreover, we assume that A.. have already been given in Jordan
canonical form.

3.2 The Eigenvalues of the Matrix M

Theorem 5 The Matrix M has the Property

-L
M' =' TT (3.3)

where

T -I [ j |(3.4)

The proof of the above is obtained immediately by substituting the values of the
matrices M and T. The matrix T is a special matrix with the property

T' = - = T (3.5)

This property will be found useful in what follows.

Theorem 6 If p. is an eigenvalue of multiplicity r, then -p. is also an eigen-
value of M of multiplicity r. If Pi = 0, then it has an even multiplicity

11



Proof: the eigenvalues are the solutions of

det(M-piI) = o (3.6)

det(M'-piI) = 0

In this case

.... (3.7)
det T(M'-piI)T- = 0

det(M+piI) 0= 

i.e., if Pi is an eigenvalue of M of multiplicity r, then -Pi is also an eigenvalue
of M of multiplicity r.

Since M is an 2n x 2n matrix, it will have 2n eigenvalues (not necessarily
distinct). Each eigenvalue has corresponding to it another eigenvalue of an oppo-
site sign (but same magnitude). Therefore if it contains a zero eigenvalue, it
will have another zero eigenvalue corresponding to it, so that the total number of
eigenvalues will be even (2n).

Theorem 7 If pi is an eigenvalue of M of multiplicity r and it has correspond-
ing to it qi eigenvectors corresponding to each of which has [in turn] are s.i >0
generalized eigenvectors, then also the -p. of multiplicity r will have correspond-
ing to it q. eigenvectors, and corresponding to each such vector are si generalized
eigenvectors.

Proof: Using Jordan canonization, we can see that the multiplicities of the
eigenvectors, the number of these eigenvectors, and the number of the generalized
eigenvectors of M corresponding to them are equal to those of M. Therefore,

(M-P I) eiq e = 0

T
-
l(M ' -pI )iqTT

- 1
e. = 0

(T14'T-piI) iqT-
1 = 0

ik

-(M+piI) qT e:k = 0

If we write Teik ei k we can see that, for each eigenvector (ordinary or

generalized) of M corresponding to Pi, there exists an eigenvector (ordinary or
generalized) of M corresponding to -Pi'

This theorem points to symmetrical properties in the spectral analysis of M.
This symmetry has no meaning for Pi = 0. It will be seen further on that this
case requires special consideration.

12



3.3 Check for the Existence of Eigenvalues with Re(p) = 0

Let us now check whether there exist eigenvalues with zero real part. It
appears that because Rl>O eigenvalues like this may exist in special cases.

Theorem 8 The matrix M will have eigenvalues with zero real part if and
only if the noncontrollable part of A in A and B or the nonobservable part of A in
A and C contain eigenvalues with zero real part.

Proof: a) We write out in detail the matrix M, with A defined as in Eq. (3.1):

A11 A12

0 A1 '

0 0'

0 A24 I B2R21B1

33, A34 I °

0 0

o 0

O 0

C41C 2
CIR C
4 12

I O0 A44

0 0

0 C I -A'
I .

0 O

0 0

0 0

-A13

0 C4 1 C4 I -A;4

-A22
22

0

-A24d24

0

-A3

-A3 4 -A44

Changing the order of the state variable of this matrix, we arrive at the matrix
M', which has eigenvalues identical to those of the matrix M and which has the
form

A1 3 0 A12

0 A3 3 0 0

A14 I B1 R2 B1 R2 2B2 0

A3 4 . O 0 o

C4 R1 C2 C4R1 C4 -A14

A2 4 B2 R,

0

O -A1 1

-A24

'211 B2R2 B2

0

O

0 0 0 C2R 1 C2 C2R1 C4 -A12

0 0 0 0
0 13

0
1 2 2

B R21 B'
22 2

0
(3.8)

M =

0 0

0 0 0

10

0

0

0

0

ll

l0 0 -A84

(3.9)

0 0

,0 0

0 - 0.O-

O A2 2

O O- A044

O O

-Ai4

0

0

0

O

O

-A22

0

0

-A;3
l / l

~1

3- I

I

M* =

I I



It is clear from this matrix that the eigenvalues of A A and A4 are
also the eigenvalues of M. According to Theorems 6 and 7, the eigenvalues of
A44 will also be the eigenvalues of M; hence if Aii, A33, or A44are eigenvalues
with zero real part, M will also have such eigenvalues. From this, the eigen-
values with zero real part (and also others) of the noncontrollable and/or non-
observable part of A are also the eigenvalues of M.

b) Let us assume that M has an eigenvalue p = jw. Its corresponding eigen-

vector will satisfy the conditions

(A-JiwI) x -BCHUB' X = O (3.10)

.C'ReC X -(A'+jI),) = O

The matrixQ = C'R C is symmetrical. Accordingly, we divide space n into
two complementary subspaces

-= '1(9) ~ c5(~) (3.11)

The vector x C( can be decomposed into two components

fnob = .9 (Q) (3.12)
X = Xob + Xob ob

Analogously, we decompose (A' + jwI)X:

lob : (A'+j I-)b A ob e (3.13)

Xnob : (A'+J6)I))\nob-' (Q),

It is clear from Eq. (3.6) that

\(A'JVI) X>ob 0 ° (3.14)

For the system composed of A and C, in which the nonobservable part of A
contains eigenvalues of the kind p = jw, knob will have a nonzero solution. For
all the other cases

A noV = 0

n ob

14 ,



and from the second of equations (3.10)

QX0 <= Q (A+j X I) ob (3.15)

We substitute xob into Eq. (3.6) and multiply it from the left by*bX thus
obtaining o

Xob{ ( A - jWI)Q (A'+;i I)-BR2l
1
B' B = o (3.16)

this, because

)4 (A-j£ 3I)x 4,xk (A'.A =+L , (x3 9xI = (3.17)

Expression (3.12) contains two expressions which are at least semidefinite.
Writing A, B, and C in their canonical form, we see that Eq. (3.12) will be semi-
definite only when the observable and noncontroliable parts of A in A, B, and C
contain eigenvalues of the kind Re(p) = 0. In this case, there exists a ~ ~ 0 which
satisfies Eq. (3.12). In all other cases Eq. (3.12) is fully definite, and hence the
only solution forA b isAob = O.

Subdivision of Cn into the two complementary subspaces

Cn =9R 1 ) 9( (BR ) (3.18)

and repetition of operations similar to (3.11)-(3.17) makes it possible to prove
that similar results are obtained for the lower part of the vector x: x f 0 with
respect to vectors corresponding to eigenvalues which are also eigenvalues of
the noncontrollable or nonobservable part of A; x = 0 for all the other cases.

It follows from this that if jw is not a noncontrollable or nonobservable eigen-
vector of A, then the eigenvector corresponding to it is identically zero, i.e., jw is
not an eigenvalue of M.

Conclusion: The only eigenvalues of M of the kind jw are those belonging to
noncontrollable or nonobservable parts of A (provided that such exist).

Remark: It can be seen from the canonical forms of A, B, and C that the
following holds when M has jw as an eigenvalue: if the eigenvalue belongs to the
nonobservable part, it will have type-a eigenvectors: x ~ 0 the eigenvector of A
and , = 0. Type-b eigenvectors'x # 0,| \ f 0,! whose components correspond to
nonobservable state variables, comprise the eigenvector of A'nob* If it belongs
to the noncontrollable part of A, then there will exist type-c eigenvectors; x = 0
and x O 0 which are the eigenvector of A'. Type-d eigenvectors: x f O, whose
components corresponding to noncontrollable state variables, comprise the eigen-
vector of Anc, and X, O.
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Note that while type a and b vectors are generally simple eigenvectors, type
-c and -d vectors are generalized eigenvectors. This is now shown by a number
of numerical examples.

Example 3.1. We have the system defined by matrices

A = 0 O -1

. 1

* ' C

R1

B = 0 1 0

0 j 1

0 1

=R2 = I12

where A has nonobservable eigenvalues p = +jw. The matrix M then has the form

1

C1

0

3 1,

-1 0

0 0 -1 0

0 0 odd- +1
o. o 6 d-1 o

O

O -1 0 -1 0

0 0 0 -1

0 -1 0 -3

I

This matrix has eigenvaluesj + v2 and +j of multiplicity two.
will be: Fe( + V), e(- / 2) and also:

0 0 2/3 J
1 1 F;I?10

. i -I ir, 
-J

O0
0
O
O

el (-j)
TJ

0

0O

e2(+J')
.2/3(1+j)

-2/3 

-2/3 j I

The eigenvectors

e 2 (-j)

Vectors e (_) are type-a vectors, while vectors e2(tj) are type-b vectors, which
satisfy 1

16 \



(M;j) e2 (±j) =-e1 (±j)

Example 3.2. We have the system defined by the matrices:

1 0 3
= 00O +1

0-1 0

C 1= 1

R R1= 2

0

0J

I

A has a noncontrollable eigenvalue p = + jw. The matrix has the form

M2

r
1 0 3 -1 0 0

0 0 0 000

0 -1' O O

-1 0 0 -1

0 0

0 0

0 -1 0 0 0 -1

Q 0 -1 -3 +1 0

This matrix, as well as matrix M in Example 3.1, has eigenvaluesK!+/2 and +j of
multiplicity two. The eigenvectorls arefe(+ v2), e(- V2) Also,

0

0
e2(+j)

2 iO

+j_

-2/3(1-J)

2/3

2/3 j

+2/3 J

0

1/3

2/3(1+j)

2/3
-2/9 j

-2/3 J

0

1/3

In this case el(,j) are type-c vectors, while e2 (+j) are type-d vectors which satisfy

el'(+j) e2 ')(+j)=-'jel(+j) !

!17 

A

el(+j)

0

0

0

0

1

I 0

B .= 0 0

0 



3.4 Canonization of M

Let us now apply to M a transformation which will bring it to a canonical
form similar to the Jordan canoninical form. In order to obtain the required
transformation, we shall subdivide the eigenvectors (ordinary or generalized) of
M into two groups as follows:

1. Group I(+). This group contains all the eigenvectros (ordinary and generalized)
corresponding to the eigenvalues which satisfy the condition Re(p)> 0. The vec-
tors will be selected so as to satisfy the equations

Meiql = Pi eiql (3.19)

Meiq2 = Pi eiq2 + eiql

qMe = Pi eqsi
q

iq(siq-l)

2. Group I(-). This group contains all the eigenvectors corresponding to the
eigenvalue satisfying the condition Re(p) ( 0. The vectors will be selected so as
to satisfy the equations:

(3.20)
Mejql = Pj ejql ejq2

Mjq(sA- ) = Pj eejq(sj1 )-ejqsj

jqs jq jqsj 3q jq

3. Ordinary or generalized eigenvectors corresponding to eigenvalues of the kind
Re(p) = 0 exist, as was mentioned above, only when A has eigenvalues such that
the eigenvectors corresponding to them belong to the noncontrollable or nonobser-
able subspace.

a. When the eigenvalue satisfying the condition Re(p) = 0 belong to the non-

observable part of A, we shall refer vectors in the form [ ftto group I(+) and the

others, corresponding to the same eigenvalue, will be'k refered to group I(-).

b. When the eigenvalue belongs to the noncontrollable part of A, we shall

refer vectors of the for to group I(-), while the remaining vectors, corre-

sponding to the same eigenvalue, will be referred to group I( ).

Having established the groups I(+) and I(-), we now construct the matrix: I

,18 i



E1 1

E = - b

E E:

Columns of 11

Columns of

E22

(3.21)

I(+)

Is )

It can be seen from Eqs. (3.22) and (3.24) that, with the exception of the case
of p. = jw, all the generalized eigenvectors interconnected by a given chain are
contained in this group. We therefore can, by proper arrangement of the col-
umns of the matrix E, find a matrix which will satisfy

(3.22)
E bIE , = V

* (3.23)

-Jnc (i j' ) ) -J'

J being a Jordan matrix.

The use of J ob(jw) and Jn (jw) is mandatory since, if there exist eigenvalues
of the type Re(p) = 0, then the generalized eigenvectors related to them will belong
to both groups.

We now define the matrix J ob(jw). The matrix Jn (jw) is defined similarly
by replacing observability terminology with controllability terminology. The
general form of Jnob will benob

nob 

I Io o o0 0
__I -_.

-4 4-
01 10
0111

I I
01 I 0

1 0

0 0

0 1

(3.24)

I.

so that

s21= [22 j
1%~ 2

i 
I



The components of J nob(jw) will be determined according to the following rules:
nob

Re(pj)

Pk = Pa1

= 0 li

nob ( j )

Re(Pi) 0' O

; Im(Pk) = 0 e Re(pk)=O ;

nob( )

nob i t )

Obkl

= 0

pn = P*" ; nob (j 'O)= OPm P Dl ; n~bmn

Pr = O t ) 1=

pq = Jnobqq( )Pq = -0----- ~))=

and this when i, j, k, 1, m, n, r, and q correspond to nonobservable state vari-
ables of A.

We shall now illustrate the construction of groups I(+) and I(-) and the structure
of the matrix J by means of several examples.

Example 3.3 The eigenvectors in Example 3.1 corresponding to the eigenvalues
j and -j are subdivided according to this classification into groups I(+) and I(-) as
follows:

I (+) i to group

I (-) \to group

e1 (-) ;

e2(-j);

e1 (+j)

e2(+j)

Example 3.4 The eigenvectors in Example 3.2 corresponding to eigenvalues
j and -j are subdivided into groups as follows:

I (-) lto group

I (+) \to group

Example 3.5 The

I I '.

el(-j) ;

e2 (-j)

el (+j) ; e(- n)

e2(+) ; e(+

matrix ~ corresponding to Example 3.1 is

0 -J 0 I O 0 1

O' 0 +j 0. 1 0_-------"-- ____ __--

0 o0 I 0
I

0 0 0 .'. 0

0 0 0 I 0
I

0

+J
0

0

0

-j J

1- i
!i 2



Example 3.6 The matrix corresponding to Example 3.2 is

'+ o o 0o 0 ..o
0 -j 0 0 0 0O - O O O O

o 0 +j o o o

o o 0 if 0 0

0 o 1 0 *+j' 0

0 I 0 0 0 -

Theorem 5. It is possible to find from matrices E- ME = one which
satisfies

(3.25)E = T-1E'-1T

Proof:

E-1ME = 

T 1E -1 T-1MT T
T E TT MTT FT= 

and by transposition

(TE'a -1T)-'M(T-,'E,-1T) = 

i.e., the matrix T -E'- 1T also satisfies Eq. (3.22)

We write

E-1 = V'

T-1E, -1T = -v'12 j

V 1 

and construct the matrix

E I = E~iE -V'12

1t 1 I

211



It is clear that E also is capable of putting M into canonical form according
to Eq. (3.22). For this matrix we have

V11 V12l E11 _V12

T E'TE = = i
-E' E;' l 21 11

This because each column int 2 is a vector contained in the subspace perpen-

dicular to the subspace defined by columns [1 i:l i.e.,

-- 1 = E 22E. -E

. %. E 21

Subsequently we shall refer
calling it simply E.

From Eq. (3.25) we get

E'22E1 2-E' 12E22

E' E -E' E
E21E 1 -

E ' 11E21

E11E' 12-E12E
' 11

only to the matrix E,

J_;2E;1 j (3.27)

dropping the bar for brevity anddropping the bar for brevity and

the following system of equations

= 0 % E21E' 22-E22 21

0 ElE' 22-E22 E t 21
= 0 E11 E' 22 -E12E21

E -E'
E22 11 12 21

E' 12E21 -E21E' 12 = 0
1221 21 12

-= (3.28)

= I

= I

22



CHAPTER 4

EXISTENCE THEOREMS

This chapter examines the properties of the eigenvector matrix E and those
of its submatrices. These properties are of great importance in checking for the
existence of a solution. Not all the theorems given here are needed for solving
the problem but are presented here to give a more complete picture of the prop- l
erties of eigenvectors.

The existence theorems which will be proven here depend directly on the ap-
parently arbitrary structure of the matrix E as it was defined in Eqs. (3.22) and
(3.27). This structure was selected in order to impart to these theorems more
of a physical meaning. It is clear that, if we fiad selected the vectors of E in a
different manner, we would have obtained different theorems.

j Existence theorem 4.1 i

a. If a system A, B is stabilizable (controllable or noncontrollable, but the
noncontrollable part is stable) and if a system A, C does not have a nonobservable
subspace containing an eigenvector corresponding to Re(p) = 0, then the matrix El2
will be nonsingular.

b. If A, B cannot be stabilized, then Ei2is singular.

Proof: We shall prove this theorem by assuming the opposite. Let us assume
that A, B is stabilizable and A, C has no nonoberservable subspaces containing an
eigenvector corresponding to a purely imaginary eigenvalue, while E12 is singular,
which is a contradiction [QED].

If E12 is singular there exists a vector which satisfies

H12 T=0 (4.1)

Such a vector will also satisfy

B22/ 0iP °0( ((4.2)

/23,



Since E is nonsingular, it is impossible that OY = 0 because we then get

(4.3)

E =0

For such a vector \ , we have

(4.4)

t°( t 0] Mp I= *BR-1B' 1

On the other hand,

[J;' 01·~] M[J -I*;...E?*jM 21k $(4.5)
L':1 I , 22 12 

Since the columns of E.. appear in conjugate pairs, the only difference between
Eij and Eti. is change of order of the columns. We define a matrix F1 by

1 II O 

0 0 1

0O I I 0 

When Fik ' 1, the column ek of E.. is real; when F In = 1, the columns e and

en are complex conjugates; F rs = for all the other elements.

Using the matrix F 1
as defined above, we get

1 - . r'E [E22'], X

F 22 - = -(22 ;E 2JEoLB`,~ .0 pJ 1 121 M 1 l

\ I

\24



When A, C has no nonobservable eigenvalue p = jw, Jnob(jw) = 0, we get

from this, together with Eq. (4.4) we have

IB- i 1 (4.7)
B -B I°C- 0

We<B = O

For a vector c which satifies Eq. (4.7), we get by substitution

: ...' · [ J i I (4.8a)

On the other hand, similarly to Eq. (4.5),

=E I I 1· 6kk;: I I · (4.8b)

Writing/i
1

= + J',/? and oi = A'e~, we get according to Eqs. (4.8a) and
(4.8b)

E 12FE= E(4.9)
S 122l, 0

E 22j = A'.O = E !

This is a form similar to that of Eqs. (4.1) and (4.2), with i'i and es? re-
placing :,,A and o<.

Similarly, repeating operations (4.4) through (4.7), we get, in analogy with
Eq. (4.7)

B' ff = 0 (4.10)

B'hA ( = 0

25



We repeat operations (4.8) through (4.10) n times, so as to define

,n J t?'n_ 1
n = A O<n-1

!

and we get a series of equations

B' c<,= O (4.11)

B'A°(= O

B'IA(= O

Hence CX will be nonzero only if c<'belongs to the space of noncontroll-
able state variables. We write A and B in canonical form

A a 1 i

The meaning of Eq. (4.11) is that xe , O only if it belongs to the form

(4.12)

I--< JIh

where OCnc corresponds to noncontrollable state variables.

If A is stabilizable, then A is unconditionally stable and all the eigenvalues
satisfy Re(p) . ° 0.1

Since

E1 2

22

it follows that

e i |E

1

2 =
22

(4.14)
O'

26 
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contains only exponents with positive real parts.

As compared to this, [12 is, by definition, constructed of eigenvectors

corresponding to eigenvalues with only nonpositive real parts. Therefore,

E 12

contains nonpositive exponents only. Therefore

c~,=0
4 = O

which contradicts Eq. (4.4).
_1

b. We now prove the inverse theorem. Let us assume that E1 2 exists, while
the system A, B cannot be stabilized. It will be seen that this results in a contradic-
tion.

If A, B cannot be stabilized, then Ane has at least one unstable eigenvalue.
This eigenvalue corresponds to an eigenvector z in such a manner that Re(p) > O
and A' z = pz. We construct the vector

nc

.... (4.15)

which will be an eigenvector of M:

Mi '9 -pz (4.16)

Since Re(p) ", 0, z & I(-). Since the upper part of z is equal'to zero, E is non-
singular, which is a contradiction. i2

From the manner in which this proof was presented, we can deduce a number
of corollaries.

Corollary 4.1.1 The columns of Ei2 which'do not oorrespond to nonstabilizable
eigenvalues of A and B and which do not correspond to nonobservable eigenvalue
p, Re(p) = 0 of A, are linearly independent.
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Corollary 4.1.2.

(4.17)

is a subspace of nonstabilizable state variables

Corollary 4.1.3 If there exists a vector .,I

(4.18)

is a subspace of nonstabilizable state variables, then 20a is also a subspace of non-
stabilizable state variables.

Proof: It can be seen from Eq. (4.15) that the structure of E12 is of the form

where the zero right-hand side of the matrix corresponds to eigenvectors corre-
sponding to nonstabilizable eigenvalues of A. If the vector ',. \belongs to a sub-

space of nonstabilizable statevariables, it has the form and satisfies the
expression Lh

E 4
From Eqs. (4.9) and (4.13)

E2 2 . = X =r =

As can be seen, this vector also belongs to the subspace of nonstabilizable state
variables.

I Existence theorem 4. 2

The matrix Eii is nonsingular if and only if the noncontrollable part of A (with
respect to A and B) is unconditionally nonstable (all its eigenvalues satisfy Re(p) > 0)
The proof of this is similar to that of existence theorem 4.1.

a. Let us assume that there exists a vector :;O such that E1,, = 0.

Also in this case Ei i, = 0 and 0, since E
- 1

exists (similar to Eq.

It is known by substitution that

, i ;O *. M [p 0 = _ *B 1 B 
_ _ _ _ _ _ _ _ _ _ __ __ ! _ _2

I(4.3) 

(4.3).'

c% ( 12) ),
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while, on the other hand, it is known that

=1;O } '11 21;, 1. da[E 1it {( j~ 1) , 0

from which it follows that

_ I*BR2 1 B' =0

B' -= 0

It is also found that Jnc(jw)" = 0. On the basis of this and considerations r

similar to those concerning Eq. (4.8), we get

[ =°M 'I = [E22B J2

Performing operations similar to those of (4.8)-(4.10), we get

+A BR B' Af~1 2 7 = 0

and similarly to Eq. (4.11)
B'A' , = 0I0

B'A'nf =. o

Therefore' =0, with the exception of the case when ' belong to the noncon-

trollable space of A, B. Also here

W h0uo 
M

O0

We should make a distinction between the three cases:

29'



1. Anc has eigenvalues only of the kind Re(p) > 0. In this case,

0.

Norm e =Nom (- 
0

t -. oN 

while, by definition of E 

Norm MT 0 E1i1 77

Therefore P =0.

2. A has eigenvalues only of the kind Re(p) = 0. In this case, the vectors
nc

bomposing Eil are eigenvectors of Anc (type-c vectors according to parag. 3.3)
and therefore cannot be dependent.

3. Ac has eigenvalues of the kind Re(p) \ >to and also Re(p) = 0. The consi-
derations used in the two previous cases together yield the conclusion that again
in this case'i = 0.

b. The inverse theorem will be proven in the same manner as theorem 4.1.
Let us assume that Eii is nonsingular and that Anc has a stable eigenvalue. There
exists an eigenvector y of Anc such that

nc
Ancy r py

Re(p). < O

The vector

is the eigenvector of M for the eigenvalue -p. Therefore, y belongs to (I+) and
Ell has a zero column, which is contradictory.
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Corollary 4.2.1 Those columns of Eli which do not correspond to noncon-
trollable and unconditionally stable eigenvalues (Re(p) > 0) are linearly indepen-
dent.

Corollary 4.2.2

(4.19)

A% (El = {

is a subspace of nonstabilizable state variables.

Corollary 4.2.3

(4.20)
r f 2(E 21y 6% (E 

The proof is similar to that of 4.1.3

Existence theorem 4.3

a. The matrix E is nonsingular/if the nonobservable partof A (with respect to
A, C) is unconditionallylinstable and there is no eigenvector belonging to the noncon-F
trollable subspace of A and corresponding to an eigenvalue Re(p) = 0.

b. If the nonobservable part of A is unconditionally unstable, then E2i will be
singular.

Proof: the proof is based on that of existence theorem 4.1. The matrix M'
has properties similar to those of M.

The eigenvector matrix of AM" is

E{M' = E'-1
=, E22IL= S

-E21 1 j

It is clear that everything that has been said with respect to E1 2 and A, B, and C
also applies to E2i and A', C', B', from which we get theorem 4.3.

Also the corollaries and their proofs will be similar.

Corollary 4.3.1 The columns of E21 which do not correspond to nonobserv-
able and stable eigenvalues and which do not correspond to an eigenvalue Re(p) = 0
corresponding to the noncontrollable part of A are linearly independent.

Corollary 4.3.2

(4.21)

.31'
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is the substance of nonobservable and unstable state variables (Re(p) > 0).

Corollary 4.3.3 If

(4.22)Y 

is a subspace of nonobservable and unstable state variables, then

E1
1

' `

is also a subspace of nonobservable and unstable state variables.

Existence theorem 4.4

The matrix E2z is nonsingular if and only if the nonobservable part of A rela-
tive to A, C contains unconditionally unstable eigenvalues.

Corollary 4.4.1. The columns of E2 2 corresponding to nonobservable and
state eigenvalues of A are linearly independent.

Corollary 4.4.2
(4.23)

X3c (E22)

is a subspace of nonobservable and stable state variables.

Corollary 4.4.3.

y C-Y( 422) ~ , E12 YE (E 22 )

The proof of these theorems and corollaries is obtained in a
the proof of theorem 3.

Corollary 4.5. When there are no eigenvalues of the kil

(a} (E112 =.9(E; 2 ) (c) 9 '(E1 1 ) =

(b) Q(E2 2 ) = %(E22) (d) %7S(E21 ) =

Let us prove (a). From Eq. (3.30),

(4.24)

manner analogous to

nd Re(p) = 0

./yo(E;' ) (4.25)

= 7&(E; )

E22E12 E1 222 2

We select the vector

32
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for which

E2E 22
y -

- 0

Since when there are no eigenvectors of the kind Re(p), we have

(E22) n ·, (Ei2) = 0 (4.26)

Since one of them is related to stable eigenvalues, while the other belongs to un-
stable eigenvalues, it is impossible that

Y C' (E;2)

and from this

E2 2 y (E 2)

But from Eqs. (4.21) and (4.22),

E2 2Y 9 (E1 2 )

Again, since the condition

y C- t (E2 2 )

is not satisfied, E22
corresponds to

Therefore,

. )
12

an one-to-one transformation within c~ (E1 2 )

- 7 (El 2 )

All the corollaries are proven similarly.
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CHAPTER 5'

SOLUTION OF THE EULER-LAGRANGE EQUATIONS

In this chapter we shall attempt to obtain explicit expressions for the solu-
tions obtained from the Euler-Lagrange equations. We shall be aided by putting
M in canonical form by means of Eq. (3.5) and by the existence theorems of the
previous chapter.

5.1. The relationships between A, B, Cand ¶. From Eq. (3.22),

M '= E E
-
1

| E1 + E .
-i | Jnc ( j w)

_%\

Jnob ( j)

Recalling Eqs. (4.17) and (4.23),

(5.2)

Jnc (j )

nobJ 

columns of C. & (E2)

cumnsn of 2:{ (E 2 2 )
, columns of e.

We get after substituting E

(5.3)

bJEE2+E12J'E' 1JE2_E12J -El_ J E
~M= V

2JE +E2 JI' E ' - B- E:34 \ ,22 21- 22Jnc ()E221-E212 2-E22 J E

/34-

J
M=EI

(5.1)

E-1j



We define

T - (5.4)
E22J'E2 = D

22 21

EIrE EE' B Er X
22 22E22 12 22 22

E 1E2 '= z

According to Eq. (3.28), we have

Y = Y' (5.5a)

E22E12 E12E22

2 2 12 22 22 12E 22 22

Multiplying on the right by E22 E2 and on the left by E' E' , we get22 22 22 22

BTE~Ia pE Et E E B It-E? EItEI Et (5.5b)
22t 22 12 22 22 22 22 22 22 22

X = X

The form in which it has been written exphasizes the fact that X is the submatrix
of El E+ corresponding to (E22 )

o2 22 22

E11 E2 = I + E1 2E 1.

Z=I+E Et- E tE )E12E22E22E21 1 2 (I-E 2 2E 2 2 21

The columns of (I- E22 E2 2) belong to,'(E 2 2 ); according to Eq. (4.24), the '
columns of E12 (I - E2 2 E 2 ), also belong to3(E 2 2 )and to %c (E22 ) as well.
Hence,

E 2 2Z = E2( I + XY) (5.5c)

All the vectors X, Y, Z, D are real expressions. Since E.. has complex
bolumns appearing in conjugate pairs, there exists a matrix F2 such that

Im (EijF2 ) = 
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and which has the form

F =2

-
0

2j

2j

1 1 0
- -I -

2

.o I IT

a. If F2kk = 1, column ek of Eij is real.

b. If F F =V'/2, then columns e1 and em are complex conjugates.

'c If F2 mm= -F m = /2j, then columns e
i

and em are complex conjugates.

d. In all other cases, F2ij- 0..

It should be noted that also for F 2 :

a. I (E F*) = O

b. F 2F* = I

Since the complex columns of all the Ei.. correspond,

Im (EijE'kl) = Im'(EijF2F*E i) =0

Similary, T
Im (E22 F 2F* F 2F E ) 2 2 = 0

Im(X) = 0 ; Im() = 0 ;^ Im(Z) = 0 ; Im(D) = 0

We shall now check the properties of matrices X and Y.

a. Equating the submatrices of M as given by Eqs. (2.11) and (5.3), we get

-CR C = E ' 'E 'J +E P(jO)E2 (5.7)
1C 21J 22J E 2 2 1' E2 2J jnc( 

= E E +E J-E� E'EBl 1E*FJ JuL
E21E 2 2 JE 2+E2 2JE 2 22222E l E2FJn )E

-C'R C = YD' + DY,- E*2FiJnc(jW)2 (5.8)

Fi is defined according to Eq. (4.6a). Constructing F1 according to Eq. (4.6a)
and Jnc(jw) according to Eq. (3 .24), we get

F J ( j J) > 0° (5.9)

322 F1Jnc ( j ) E222 0
36\



Jnc (jw) exists only if Anc has eigenvalues of the kind p = jw. These eigen-
values again belong to D'.

Let us divide the space &n into two subspaces: CM (jw) is the subspace
whose base is ! defined/by the generalized eigenvectors of DI corresponding tb the

eigenvalue p = jw of Anc and C (jw) is the complement of ehc(jw).eigenvalue p = jw of Anc vc Ch/,

Each vector in the space' Cn will be decomposed into two components

+ f ~~ 1 nc( Jo)) (5.10)

x~x1 1 X 2C (j )

It follows from the definitions of D and xi that E22 x1 is an eigenvector of D'. Therefore
E22x1 E ci (Jnc (jI)) )whence we get after substitution:

-x'*C'R Cx = xi*(TD' + DY)x, - x21 (E- jE
1 x;*(2 + (E2F1Jno(j.J)Et2)x2

Due to separation of x1 from x2, it is clear that

x,*(C'R 1 C - E2l2 F 1 (j(,J)E. 2 )x

Let us designate the terms in parentheses by Q1. This is the value of Q which
would have been obtained but for eigenvalues of the kind p = jw of Anc

From this

YD' + DY - -Q1 O ' (5.11)

Since D represents a matrix with eigenvalues having only real nonnegative com-
ponents, it follows from the augmented Routh-Hurwitz criterion that

By iC O (5.12)

b. Again, by equating the submatrices of M we get

2 11 12 12 11 1 hob(j W)E 
~E1 E,' E"I t- JE' IE. - E E P , E +,.11 222 2JE12 12 22 22 22 222 11

+ E 1 1 J(I-E22E 2 2)12-E12(I-E2 2E 2 2 )J E11F1Jno b( El l

Multiplying by E22from both sides, we get rid of terms containing (I - E2 E)

2BR2B'E2 =-E22(ZD'X + XDZ*')E* - E F1 J (j LU)E E* 
22 2 22 22 2222111 nob l122
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and, after constructing E
22 Z according to Eq. (5.5c), we get

(5.13)
-E2 '4BR21 B' - X(YD' + DY)XE 2 =-E 2 .E D'X+XD+E* FlJob(jJ)El E2 2

*-E2 BR2 1B I+XQ X-E F1Jn ( W)E1B,,=E (D'X+XD)ELI

Using considerations similar to (5.10) and (5.11), we see that the expression
in parentheses is negative-definite.

Since

^%( X) B) ( = c99(D)

we have

)'X + XD . 0

And according to the extended Routh-Hurwitz criterion, we get according to Eq.
(5.11)

X : 0O (5.14)

5.2 Expansion of eMt

From Eq. (5.1)

(3(t) = eMIt = E eztE-1 (5.15)

Due to the special structure of J, we get

bette (5.16)e =
e -

J

6

"
Jnob()e

-J' t e
J
t'

-

J (j00)e Jc- e-J't

Using Eqs. (5.15) and (5.16) we shall try to find expressions for'O2+(t) and
022(t) ·
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Constructing E, we get similarly to Eq. (5.7):

JtE22- Ee-J'tE21-E22e J' t et J 'J n(J)eJrdrE2

_ ,,itJt , -J't
2122 22 E22 .22e E2E22E 21

-E 2 2 e E 2 2 22 E22JnOj°)E22 E22
YD't D Dt -Dt - DC-E22E22Y -e Y-e D E 2 2 Jnc(3 )E 2 2e d E2 2 E2 2

22 Dt Dt D't DC , ,2
=E

2 2
E 2 -Dt(e DtYeD't_ eE22Jnc(j )E 22 e d 22E2

t -Ot Ot D't D2 nc 22, 'cd ) E 2 2 E=E22E22{e (e Ye -Y- Je E22F;Jn(jW)E 2
2eD d )E 222222 Ie 0 22 1nc 2

Evaluation of the expression in the braces yields:

e 2FJnc ) E22 = -e Qenc~~Y'-EFJ )E3eDt{=~D'te'

We define

(5.17)
S(t) = -eDtQeD'tdt

(t) = E22 E2 2 :·Dt(t)21 22 22Ds~t E2f 22 ,

Let us now check 922 (t) to determine the existence (or nonexistence) of the
conjugate point

2 2 (t) 2 (t)E22E2

We shall check the first expression only:

;_t) = -E21 JtE2+'22e eJ' tE1

'2f.2 2 2 E +E e. .2 21 2 22 22e 1E222222+22e
e~.2(t 3'222t 2 _yeD' tXe-Dtz' E22E22

· ~ 2 2222~~ 22

E)2E2 1122-'22

= e Dt(-eDty eD'tX+I+YX E22 E2

e=Dt; (e DtIeDteD t
_Y)X E2 2 E 22
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Differentiating the expression in the parentheses, we get

Ed (DtYeDt-Y) = eD t DY+YD't
Dt D't

= -e Q&e

Qi is defined by Eq. (5.1). We now define Si in terms of Qi

S1 = 4 etQ eD' tdt

)22(t )E22E 22 = eDt [I +' 1 X]E22 E2 2

The second expression for 022 (t) is

22t--; I-E22E22 (-E 2 2eJtE 2+E 2 2e- J tE1 1 ) (I-E22E22)

=(-E22E22E21 eJ'tEl 2+E22e )22E22

22 2 ) 2 1 e t (-E22 22

,IT It t,--JtIe it +- -." . (,I 
-E22E22E21 eJ .222- 11 222

22(t)2

+( I-E 2 2E 2 2 )E2 1 eJtE 2 ( I-E 2 2 22)

0
22

(t) has three parts, for which it can be stated that

I-(a 22(t )=&E E22)

QC&3 2 2 (t ) 1,=R(E 2 2 )

A QO22 ( t )~2 )AE 2 2 )

The structure of the matrices 022(t)ij is such that each of them has three

zero submatrices and one nonzero submatrix G02 (t)ij. Accordingly, the struc-
ture of the matrix 22(t) is lJ

40'

and get

(5.18)

? (t)=eD- 'I+S +

% (t)1i22, it

g022(t),2=4(E22)

C7btf 22 (t)i2rE2 )

td(2 2(t j27E2-2)



W22 )

0
1

(5.19)

The columns of (I - E2E2 ) as well as those of El2 (I- E2 2 E22) belong to vt E2 2 )
and hence cannot belong to J ( E

2 4
). Therefore, for any vector that satisfies

Y n (E 2 2 ). it is also true that 022 (t~2 y y4 0 , whence

det -2(t)tOi
2 2 _21

Sincejl,)=11)=E 2 2 ) while

() - 1
%' 2 (t) =22

according to Eq. (5.19) the structure of 022 (t) is
22

22 (t)1 1

0.

We get

P(t =- E2E22 I+S(t'). e -Dt eDts(t)E Et
-22 2 2 tle;.. T22 22

P(t) = E22E2 }I+S1 ( t )X I S(t)

Since the difference between S(t) and S
1 (t) consists in the expression E22 Jnc(jw)

E'22 and

9.(X) 3 X:(E12) 3

is a subspace of nonstabilizable state variables, we have

S1X = SXIx=s
and

(5.20)
P(t) = E22E

2 2 {I+ (t)EX3 S(t)E E 2E2
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5.3 Solution as tf -- C
f

Let us check (S). By definition of D and S, it is clear that

C71 (S)

is a subspace of nonobservable and stable variables.

Also, if Anob has an eigenvalue, then the eigenvector corresponding to it
will also be the eigenvector of D', and therefore 4n(S) will also contain a

subspace of nonobservable and unstable state variables. Therefore,\

.71 (s) D

is a subset of nonobservable state variables.

S{(t)- 0 as t - ocj since D' corresponds to an unstable matrix. I 

Let us find p(t)

P(t) = E2 2 E2 2(I+S(t)XtS (t),

=E 2 2 E2S (t)+S (t)S(t)X S(t)S(t)E2 2
E2 2

=S (t)S(t)Xjs AS(t)

P(t) - co will have a finite value, except when I

On the other hand,

oO%(X) 3D

is a subspace of nonstabilizable state variables.

P(t) will have no solution when A has a nonstabilizable and nonobservable
eigenvalue. In all the other cases, P(t) is finite and equal to

P(t) = St(t)S(t)XS(t)S (t)
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CHAPTER 6

THE PROBLEM OF THE MAXIMUM

6.1 Introduction

The advantage of the method used here for solving the problem of the minimum
is that it can be adapted to the solution of similar problems. We shall use this me-
thod for solving the problem of the maximum for RI < 0. In order to avbid repe-
tition, we shall not again present the proof but shall refer to the applicable proofs in 1
the problem of the {minimum while pointing out the differences that exist. 

6.2 The Eigenvalues of M

The symmetry properties of the eigenvalues are independent of the sign of R1;
hence, theorems 5-7, which were proven in Chapter 3, apply also here.

Unlike the problem of the minimum, in the problem of the maximum it is
possible for M to have eigenvalues of the kind Re(p) = 0 even if the system A does
not have eigenvalues of this kind. Let us therefore differentiate between two kinds
of pure imaginary eigenvalues.

a. Eigenvalues with zero real part belonging to the noncontrollable or non-
observable part of A (eigenvalues of the closed loop). These values will always
appear with an even multiplicity.

b. Eigenvalues with zero real part which are obtained from the optimum
solution (eigenvalues of the closed loop).

Theorem 8 also applies to type-a purely imaginary eigenvalues whereas for
the others we get the following theorem.

Theorem 8a The matrix M will not have additional eigenvalues of the kind
Re(p) = 0 (of the closed loop) if and only if

It n-j4(c~~R~~o~f (*l~~jw)~~io~-1. (6.1)

x: (Al+j0)X (C I'R 1)
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The proof of this theorem follows from Eq. (3.12).

To the extent that there exist zero eigenvalues (of type b) which are the solu-
tion of Eq. (3.13), they will satisfy the following theorem:

Theorem 9 If M has eigenvalues p = 0 which do not correspond to a type-b
eigenvalue of A, then for each ordinary eigenvector corresponding to this eigen-
value there will exist a general eigenvector.

Proof: From Eq. (6.1), the upper part of the simple eigenvector correspond-
ing to p = 0 satisfies the equation

(6.2)

xi A(CIR1C) *A'+BR B' x = 0

Where the lower part of the vector is obtained uniquely from its upper part (Eq.
(3.10).

The evenness of multiplicity of the eigenvalues of M ensures that, if there
exist m vectors satisfying Eq. (6.2), then the multiplicity of eigenvalue p = 0
will be 2m. Therefore, there must exist additional nonordinary (generalized)
eigenvectors.

We shall put M in canonical form here in the same manner as this was done in
Eq. (3.5) except that while in the case of the problem of the minimum the imagi-
nary eigenvalues appeared in conjugate pairs, the additional imaginary eigen-
values (of type b), when these exist, may also appear in single pairs. In such a
case, we shall arbitrarily assign the eigenvalues with zero real part and positive
imaginary part to group I while the others will belong to group I Should there
exist a zero-type eigenvaiue, we shall assign the ordinary eigenvecftos to group I( )

and the generalized eigenvectors to group I

We get

E-1 .ME T =a (6.3)

-1 T-4 (6.4)
E T ' T

where

(6.5)

with J(O) defined similarly to Jnc(jw) for a noncontrollable eigenvalue.
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6.3 Existence theorems

The existence theorems which were proven in Chapter 4 apply also here with
minor modifications. We now consider the case that, with the exception of p = 0,
M has no additional eigenvalues Re(p) = 0 of an additional kind (type-b). The proof
of this can be extended to other cases but will not be given. 7

Existence theorem 4.1 applies in its previous form;

Existence theorem 4.2 applies in its previous form;

Existence theorems 4.3 and 4.4 acquire the following forms:

Existence theorem 4.3a. The matrix Ei is nonsingular if and only if the
nonobservable part of A relative to A, C is unstable.

Existence theorem 4.4a a. Matrix E2 is nonsingular if the nonobservable
part of A relative to A, C contains uncondltionally unstable eigenvalues (Re(p) >O),
if there does not exist an eigenvector belonging to the noncontrollable subspace of
A and corresponding to an eigenvalue of the kind (Re(p) = 0, and if there does not
exist a type-b eigenvalue p = 0.

b. If the nonobservable part of A contains stable eigenvalues, then E22 is
singular.

6.4 Solution of the Euler-Lagrange Equations

The solution of these equations for the case of a maximum is the same as the
problem of a minimum, and the development is therefore also the same. It should
only be remembered that it is possible here to have complex X, Y, Z, and D.

For convenience in proof, we shall assume that the system is stabilizable and
observable. This assumption does not detract from the generality of the approach,
since it is clear that in the case when the system is not stabilizable, the solution as
t \L-' o<bwill be infinite, while for the nonobservable part it was shown before
that its properies have no bearing on the existence or nonexistence of a solution.
We make a distinction between two cases.

6.4.1 M has no type-b eigenvalues with zero real part. Similarly to Eq. (5.19)
we get

-Dt (6.7)
22 (t) = e [ ,I + 8 (t) X (t) ]

S(t) is defined as in (5.17) except that now Q C' 0. Since it was assumed that the
system is stabilizable and observable

X f 0
xto

2 (t) = e t X-122 ~X + S(t) IX
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S(t) ranges from zero to negative infinity. In order that there be no conjugate
point for all t, it is required that

[ X -
1 + (t)]<0 (6.8)

x-l ;C o (6.9)

We shall now check when an expression such as this is obtained. Expressing
the submatrices of A according to Eq. (5.3)

A = Z D' + X D Y

and making the substitution Z = I + XY, we get

A = D' + X ( DY + YD') = D' + X C'R C (6.10)I 1
D' = A - X C'R1C

Substitution of D' into Eq. (5.13) yields

-( X A + A'X ) = X C'R1CX - BR1 B' (6.11)

Since R <. 0, it follows, according to the augmented Routh-Hurwitz criterion, that
X will be negative definite only if A is unconditionally stable.

Hence the necessary condition for existence of a solution to the problem of the
maximum for any t is that A be stable.

The solution of the Riccati equation is

P =, X-1 (6.12)

It can be seen from Eq. (6.11) that this expression solves the Riccati egua-
tion. It should be noted that the matrix X = EIE is symmetrical and then X -
will be a solution of the Riccati equation and yield a different solution than X-1;
i.e., in this case the Riccati equation has two solutions.

It can be seen from Eq. (6.10) that
I

A - X CRC = D' (6.13)

Hence Eq. (6.12) corresponds to an unconditionally unstable matrix.

It can be shown that A - X(C'RIC) corresponds to an unconditionally stable
matrix. Hence, of the two solutions which will be found for the Riccati equation,
we select the one that satisfies

Eigenvalues of [ A = X (C'R1 C) ] 0 (6.14)

46t" " [ A - P (C'R1C) ] O
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When A is unstable, the maximum t for which it is possible to solve the prob-
lem of the maximum is the smallest t for which

det X- 1 + 'S (t) ] = (6.15)

6.4.2. M has kind b purely imaginary eigenvalues

As in the preceding section, we shall assume that the system A is stabilize,,
able and observable. Due to the cumbersome expressions which are obtained, it
is difficult to obtain explicit expressions, and hence we shall attempt to examine
this case by comparison with the preceding case. We prove the following theorem:

Theorem 10 We are given a system defined by matrices A, B, and C and the
cost functions

(R1 ) = Jf (r'R 1 y + u'R2 u ) dt

A necessary and sufficient condition for a finite solution of f(R1) is that the prob-
lem have a solution for the case of cost function f(mRi)

mel

Proof: Let us assume that f(mR ) has no finite solution, i.e., that is, it al-
ways possible to find a u(t) such that f(mR1) .o, . For such u(t), we also have
f(Ri)H.q, since

If(mRl);tf)) r If(Rl;tf)!

Therefore there will be no finite solution for F(R1 , tf). The proof of the inverse
of this theorem is identical.

We now employ this theorem for drawing conclusions regarding the case at
hand. In our case, the equation

x ' [ (A-j W I)(C'R1C '(A'+ j t I) + BR2 B'] x = 0

has a solution for x. It is always possible to replace Ru by mR1 , when m is such
that

x*' [ (A-j {A I)m 1 (C'R1 CT (A'+ jJI) + BR 1 B'] x = 0

has solutions of the kind Re(p) = 0 only for x = 0. It was seen before that in such
a case we get an infinite solution as tf e,~ . Hence, according to theorem 10,
it will be infinite in our case also.
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6.5 Results

We have seen that, unlike the problem of the minimum, the problem of the
maximum can be solved for all the tf only in particular cases. The criteria for
existence of a solution are quantitative 'rather than qualitative.

The conditions obtained as tf -7 o are more of the qualitative kind.

The sufficient and necessary condition for the existence of a solution to the
problem of the maximum as tf f is: a) M has nocomplex eigenvalues; b) the
system A is unconditionally stable.

Condition a) can be checked out according to theorem 8. From this theorem
we get the necessary condition for the existence of a solution

A|A' - BRi 1 B' 0

It should be noted that this condition is sufficient when AQ is symmetrical.
When Q = -I, this shows that it is easier to obtain a finite solution when A is
symmetrical and, conversely, it is easier to obtain an infinite solution when A has
an increasing asymmetry.

Examples for the Solution of the Problem of the Maximum'

We not present three numerical examples of the solution of the problem of the
maximum (R1 < 0). These examples pertain to first-order systems and are suit-
able for three cases characteristic of the problem of maximum.

Example 1. We are given the system

x = 5X + u

and the cost function

f( x;u).= t (5-9 x2 + u ) dt

which is to be maximized [sic].

For this problem,

A=5 B 1 C=1

R1 = - 9 R2 = 1

The matrix of Euler-Lagrange equations for this case will be
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5
M =

9 -

det [ M - sI =.-(
5-s ) (-5.- s.) s 25 - s ) ( - 5..- s .) = sI - 16

The eigenvalues of M are s1 = + 4 ; - 2 = - '4. Diagonalization of M yields

M[ - [9/
lg - 5,1 j1/

(~t)= e , = /
1/

(t)=
1/

:-I m: j4 0 19/ 8 '-I/
8 I/ V-8 l ° 4 |1//Y8 1/

V8 -1/ f8 e 4t0 _X 9 / 1f -1/

V8 1/- l, 0 e 11/ T8 1/

\v1 1/ i fj e 4tO G9/ -1/
l 9/ l -4 4 1/

f-0 9/ r- 1

To check for existence of a conjugate point we must check out the matrix

1 e4t 4t
2 2 (t) = 8 -e4t + 9 e ]

This expression vanishes for tc = 1 In 9 ~ 0.27, and hence there exists a conjugate

point for the problem of the maximum for tf > tc . An optimum solution will exist

only for tf<tc, when there is no conjugate point.

Since

'1 (t) 9 2 e4t - e -4t)
21 8-e

it follows that, in cases when a solution does exist, the cost function will have
the value, according to Eq. (2.19),

P (x ) =0

e4 .-
-4 tf

- e

4tf -4 tf
,-e +9e .

Let us now try to gain insight into the meaning of the conjugate point. Let
us assume that the system has the initial condition xO = 0, if an optimum solution

exists, when we shall get for the cost function P(O) = 0. Had we selected u = u
0

= const, we would have obtained

'49.
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X
ex
1

x .

--5x + u
5t o(e -1)u

O

f( x;u ) = 9 -2 + 2
) dt =J/f 92Uo ( 1-e5 t + uo ] dt

a

2 l 16t 18 5t' 9 elOt

25 125 250

The expression in the brackets is positive for t d 0.32 and negative for
t > 0.32, and when u ->N4 this expression approaches -oo. That is, it is
possible to obtain a better minimization for t > 0. 32 than that which would be
obtained with optimum u. It should be noted that in fact the value t = 0.32 is
higher than that of the conjugate point (which is tc = 0.27); this means that the
selection of u0 = const for 0.27 / tf _0.32 is poor. However, it is possible to
find another u(t) which will make the cost function go to infinity.

Examination of the cost function shows that the optimum cost function changes
sign at t and becomes positive for tf > t . Selection of u = 0 will always result
in a minimal value.

Example 2. We are given the system

x = -5x + u

with a cost function identical to that of example 1

f 2 2
'f ( x;u) =J (-9x+ u dt

I o
Here

A = -5 B,= 1 C - 1

jR = -9 Rr Lq

The matrix of the Euler-Lagrange equation is

-5 -. A
.M =

9 +5

det (M - S ) = S-Again in this case the eigenvalues are +4

Again in this case the eigenvalues are si = +4

16

S2 =-42
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Again, by diagonalizing we get for the system's matrix

Ir- / 4t
Mt _10 -1/ vsi e 0(-1/R -1

(t) = if /8lo e 4t 9 /
9/V8O 1/ 0 e 9-r8 1/F8)

For 92 2(t) we get

-4t 4t
22(t) =- [-e + 9e ]

This expression is never zero, and hence there will be no conjugate point for any
finite t. Hence,

4t -4t

21(t) = - 9e

And according to Eq. (2.19)

4tf -4tf
9e - 9e 22 = · 2

f(x) = P(t) x -4t 4t x
4tf o

-e + 9e

As tf 4,

P (tf) = -1

tf

It is expected that there exists a solution for tf, since A is stable, while

M has no purely imaginary eigenvalues. It should be noted that P = =1 is a solu-
tion of the applicable Riccati equation

9 + 10 PI+ p2 = 0

Also P = -9 is a solution in this case. This solution, however, is incorrect. To
show that this is so, we apply the test established in Eq. (6.12)

The eigenvalues of [A- P-1(C'R C)I must be positive for
1

-5 - (+1) ( -9) = 4 P = -1

-5 -(+4j )( -9) =-4 P -9

and hence only P = -1 is the correct solution.
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Example 3. We are given the system

x = 3 x + u

and an eigenfunction for minimization

tf 2 2f (x; u) = (-25 x + u) dt
o

In this case,

A = 3 B = 1 C = 1' R = -25 R2 = + 1

The matrix M which is obtained is

M = ; det (M -sI) = s + 16
S -3M

and the eigenvalues are s = +j 4. Expansion of eM t yields

(t) =e 1~-j4 3+j o Jt (t) =-J4 3+j40 e - j 4t -(3 -j4 ) 

After expansion, we get for On (t)

3 54 sin(4t 4,
22(t) = (sin 4t + cos 4t) = sin(4t +

2D = arc sin-'

which becomes zero for the first time when

4t + = 2p . !

1 4T ( 2i7 - arc sin 4

and this is the maximum value that tf may attain.

It can be seen that in the case of time variations the solution is always smaller
than one cycle.

From the cover letter

..... The existence theorems in Chapter 4 can also be proven as inverse theorems
in all the cases. I did not want to complicate matters and hence did not include these
proofs. The proofs are by means of substitution.[

\52



The development in Chapter 5 is cumbersome and nonelegant, but this was
done for the sake of mathematical exactness. The extensive use of E22 E+
was caused by theidesire to obtain matrices corresponding to the nullity space of
E

2
. For example, if2

-4

then

t£'
·2· tEI 9

_ , - - . 5- - I
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